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Abstract

Score distillation sampling (SDS) has proven to be an important tool, enabling
the use of large-scale diffusion priors for tasks operating in data-poor domains.
Unfortunately, SDS has a number of characteristic artifacts that limit its useful-
ness in general-purpose applications. In this paper, we make progress toward
understanding the behavior of SDS and its variants by viewing them as solving
an optimal-cost transport path from a source distribution to a target distribution.
Under this new interpretation, these methods seek to transport corrupted images
(source) to the natural image distribution (target). We argue that current methods’
characteristic artifacts are caused by (1) linear approximation of the optimal path
and (2) poor estimates of the source distribution. We show that calibrating the text
conditioning of the source distribution can produce high-quality generation and
translation results with little extra overhead. Our method can be easily applied
across many domains, matching or beating the performance of specialized methods.
We demonstrate its utility in text-to-2D, text-based NeRF optimization, translating
paintings to real images, optical illusion generation, and 3D sketch-to-real. We
compare our method to existing approaches for score distillation sampling and
show that it can produce high-frequency details with realistic colors.

1 Introduction

Diffusion models have shown tremendous success in modeling complex data distributions like
images [49, 52, 3, 22], videos [57, 4] and robot action policies [13]. In domains where data is
plentiful, they produce state-of-the-art results. Many data modalities, however, cannot enjoy the same
scaling benefits due to their lack of sufficiently large datasets. In these cases, it is useful to exploit
diffusion models trained on domains with rich data sources as a prior in an optimization framework.
Score Distillation Sampling (SDS) [46, 67] and its variants [68, 20, 74] are a widely adopted way to
optimize parametric images, i.e., images produced by a model like NeRF, with a pre-trained diffusion
model. Despite being applicable to a wide range of applications, SDS is also known to suffer from
several significant artifacts, such as oversaturation and oversmoothing. As such, several variants have
been proposed to alleviate these artifacts [68, 74, 32], often at the cost of efficiency, diversity, or other
artifacts.

In this paper, we investigate the core issues with SDS by casting the class of score distillation
optimization problems as a Schrödinger Bridge (SB) problem [53, 12, 11, 42], which finds the
optimal transport between two distributions. Specifically, given some images from the current
optimized distribution (e.g., renderings from a NeRF), applying the transport maps them to their pair
images in a target distribution (e.g., text-conditioned natural image distribution). The density flow
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formed by these mappings is transport-optimal, as defined in the SB problem. In an optimization
framework, the difference between paired source and target samples, computed with an SB, can be
used as a gradient to update the source. Su et al. [63] have shown that this path can be explicitly
solved using two pre-trained diffusion models. We show that one can also compose these models as
an optimizer to approximate transport paths on the fly.

Under this framework, we can understand SDS and its variants as approximating a source-to-target
distribution bridge with the difference of two denoising directions. The denoising scores point to the
source and target distributions respectively, with the source representing the current optimized image
that updates with each optimization step.

This framing reveals two sources of errors. First, these methods are a first-order approximation of the
diffusion bridge. Specifically, Gaussian noise is sampled to perturb the current optimized image, and
single denoising steps, instead of the full PF-ODE simulation, are used to estimate the transport. This
induces error in estimating the desired path. Recent works [34, 41] that use multi-step estimation
can be explained as mitigating this error. Second, estimating the denoising direction to the current
source distribution is non-trivial, since the current optimized image may not necessarily look like a
real image (e.g., initializing with Gaussian noise or starting from a render of an untextured 3D model).
Our analysis reveals that SDS approximates the current distribution with the unconditional image
distribution, which is not accurate and results in a distribution mismatch error. We show that recent
SDS variants [68, 74, 32] can be seen as proposals to improve this distribution mismatch error.

Finally, our analysis motivates a simple method that rectifies the distribution mismatch issue without
additional computational overhead. Our insight is that the large-scale text-to-image diffusion models
learn from billions of caption-image pairs [54], where a breadth of image corruptions are present in
their training sets. They are also equipped with powerful pre-trained text encoders, which empower the
models with zero-shot capacity in generating unseen concepts [51, 50]. As such, simply describing the
current source distribution with text, even if it is not part of the real image manifold, can approximate
the distribution of the current optimized image, leading to improved transport paths. Our simple
and efficient solution can be easily applied to any existing application that uses SDS. We show that
it consistently improves the visual quality in the desired domain. We comprehensively compare
our approach with standard distillation sampling methods over several generation tasks, where our
approach matches or outperforms the baselines.

Our contributions are as follows:

• We propose to cast the problem of using a pre-trained diffusion model as a prior in an
optimization problem as solving the Schrödinger Bridge (SB) problem between two image
distributions. Specifically, it can be seen as bridging the distribution of the current optimized
image to the target distribution under a dual-bridge framework.

• We analyze recent SDS-based methods under the lens of our framework and explain the
pros and cons of the individual methods.

• Our analysis motivates a simple yet effective alternative to SDS by using textual descriptions
to specify the current optimized image distribution. It achieves consistently more realistic
results than SDS, producing quality comparable with VSD [68] without its computational
overhead. We compare various generation tasks to show its wall-clock efficiency and quality
generations against state-of-the-art methods.

2 Method

In this section, we present an analytical framework that casts the score distillation sampling (SDS)
family of methods as instantiations of a Schrödinger Bridge problem. We show that many recent SDS
based methods can be interpreted as an online solver for the problem. That is, each SDS optimization
step is a first-order approximation of a dual diffusion bridge formed by two probability flow (PF)
ODEs [63]. We analyze SDS and its variants under this general framework. Then, we present a
simple solution based on the analysis, which leads to significant quality improvement with little extra
computational overhead.
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Figure 1: Optimization with diffusion models as approximation of a Schrödinger Bridge Problem (SBP). (a)
We propose to formulate optimization with diffusion models as bridging the distribution of the current optimized
image xθ to the target distribution under a dual-bridge framework (a). Current methods can be interpreted as
approximating the optimal transport ϵ∗SBP between these distributions via the difference between projections of
a noised image xθ,t onto the two distributions. This analysis reveals two sources of error: (1) these gradients
are linear approximations of the optimal path, as illustrated in (a), and (2) the source distribution used for
computing this approximation (e.g., the unconditional distribution in SDS [46]) may not be aligned with the
current distribution, illustrated in (b).

2.1 Background

Diffusion models define a forward “noising" process that degrades data samples x gradually from
the image distribution to noised samples zt, and eventually the i.i.d. Gaussian distribution [23, 60].
This process is indexed by timesteps t, where t = 1 indexes the full Gaussian noise distribution and
t = 0 indexes the data distribution. A diffusion model, parameterized by ϕ, is then trained to reverse
this encoding process, iteratively transforming the noise distribution into the data distribution with
the score-matching objective:

LDiff(ϕ,x) = Et∼U(0,1),ϵ∼N (0,I)

[
w(t) ∥ϵϕ (αtx+ σtϵ; y, t)− ϵ∥22

]
, (1)

where y is a conditioning text prompt, and αt and σt are hyperparameters from the predefined noise
schedule.

Probability Flow ODE. Denoising score matching [62, 27, 59] shows that the diffusion model
denoising prediction can be rewritten as a score vector field:

∇x log pt(x) = − 1√
1− αt

ϵt. (2)

Because of its special connection to marginal probability densities, the resulting ODE is named the
probability flow (PF) ODE with the following expression:

dx = [f(x, t)− 1

2
g2(t)∇x log pt(x))]dt, (3)

where f(x, t) and g(t) are pre-defined schedule coefficients. This PF-ODE can be solved determinis-
tically [61], mapping a noise sample to its corresponding data sample through the reverse process
and the opposite through the forward process (inversion). This cycle-consistent conversion between
image and latent representations is important in establishing dual diffusion implicit bridges.

Dual Diffusion Implicit Bridges. Dual Diffusion Implicit Bridges (DDIBs) [63] compose a diffusion
inversion and generation process for solving image-to-image translation problems without requiring
a paired image dataset. Instead, DDIBs use two diffusion models trained on different domains (or,
analogously, one model with two different text conditions). DDIB inverts the source image into
a noise latent via the forward PF-ODE and then decodes the latent in the target domain via the
reverse PF-ODE. DDIBs can be interpreted as a concatenation of the Schrödinger Bridges from
source-to-latent and latent-to-target, hence the dual bridges in its name. DDIBs enable solving
transport between two distributions using a single pre-trained diffusion model. We build on this
insight in an optimization context.
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Figure 2: Comparision of SDS variants under our analysis. We illustrate the major gradient components of
different SDS variants and provide a straightforward comparison with ϵSBP.

2.2 Optimization with Diffusion Model Approximates a Dual Schrödinger Bridge

Many generative vision tasks involve optimizing corrupted images to the image manifold. For
example, in 3D generation, a 3D representation like NeRF is optimized to render natural images
matching a prescribed text prompt. Methods like SDS enable this by using a pre-trained diffusion
model as a prior. We propose formulating such optimization problems as solutions to an instantiation
of a Schrödinger Bridges Problem (SBP). SBP finds cost-optimal paths between a source image
distribution psrc and a target image distribution ptgt [66, 14]. Optimizing a parametrized image toward
the natural image distribution can be cast as finding the optimal paths between the current optimized
image(s) and the natural image distribution. Instead of solving this problem directly, which would
require training a generative model from scratch [38, 14, 10], we show that pre-trained diffusion
models can be exploited as an optimizer that approximates the path. Further, the gradient computed
by the existing score distillation methods can be viewed as the first-order approximation of this path.
This formulation is illustrated in Figure 1

Let xθ ∈ Rd represent a parametric image, i.e., an image produced differentiably by a model with
parameter θ, such as a NeRF. To leverage the pretrained diffusion model, we add noise ϵ ∼ N (0, I)
to obtain a latent at timestep t:

xθ,t = αtx+ σtϵ

Suppose that ψt′,src and ψt′,tgt denote the paths obtained by solving the PF ODE as in Eq. 3 from t
to 0, both starting from xθ,t, such that ψ0,src ∈ psrc, ψ0,tgt ∈ ptgt, ψt,src = ψt,tgt = xθ,t. This forms
a dual diffusion bridge [63] from ψ0,src to ψ0,tgt. We approximate this path per-iteration using a
pretrained diffusion model. We denote the displacement of this path as:

ϵ∗SBP = ψ0,tgt − ψ0,src. (4)

Fully simulating this bridge involves solving two PF ODEs, which invokes dozens of neural function
evaluations (NFEs) to estimate the gradient of each iteration. Instead, one can estimate each half of
the bridge with a single-step prediction by computing two denoising directions ϵϕ,src and ϵϕ,tgt. We
thus obtain a first-order approximation of a dual diffusion bridge with the difference vector:

ϵSBP = ϵϕ,tgt − ϵϕ,src, (5)

which is subject to the following sources of errors.

1. First-order approximation error. Instead of performing full PF-ODE simulations, the
single-step noising and prediction are less accurate and can induce errors. Recent work
ISM [34] can be interpreted as reducing this error with a multi-step simulation to obtain
xθ,t.

2. Source distribution mismatch. The dual diffusion bridge relies on ϵϕ,src accurately estimat-
ing the distribution of the current sample, xθ. A series of works can be viewed as improving
this error [68, 28, 74] by computing more accurate ϵϕ,src .

We show that ϵϕ,tgt − ϵϕ,src is an effective gradient when both the source and target distribution are
well expressed. Next, we discuss the popular score distillation methods under this analysis. We argue
that their characteristic artifacts can largely be understood due to the errors above.
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2.3 Analyzing Existing Score Distillation Methods

We analyze SDS and its variants through our framework by inspecting each component in the
computed gradient. For notation, ytgt is the text prompt representing the target distribution, and ∅
denotes the unconditional prompt. For each method, we present its gradient update and discuss its
implications.

Score Distillation Sampling [46]:
ϵSDS = ϵϕ (xθ,t;∅, t) + s · (ϵϕ (xθ,t; ytgt, t)− ϵϕ (xθ,t;∅, t))− ϵ,

where s is the strength of classifier-free guidance. When s is small, the ϵ functions as an averaging
term to regress the image to the mean. However, the SDS gradient has been shown to work best with
extreme values of classifier-free guidance s like 100. We can rewrite the gradient to emphasize how
the conditional-unconditional delta dominates at high CFG scales.

ϵSDS = s · (ϵϕ (xθ,t; ytgt, t)− ϵϕ (xθ,t;∅, t))︸ ︷︷ ︸
Dominant when s≫1

+ϵϕ (xθ,t;∅, t)− ϵ,

Experimentally, we produce very similar results at high CFG with or without the non-dominant terms.
We argue that SDS should be interpreted through the dominant term, which fits within our analysis.
Under this interpretation, the unconditional distribution approximates the distribution of xθ poorly,
instead representing images of any identity with low contrast and geometric artifacts. Figure 1(b)
illustrates the effect of a poor approximation. The bridge from the unconditional to conditional
distribution leads to the characteristic oversaturation and smoothing of SDS results.

Delta Distillation Sampling [20]:
ϵDDS = ϵϕ (xθ,t; ytgt, t)− ϵϕ (xref,t; ysrc, t) ,

where xref,t is a noised version of a reference image in the image editing task. As shown in Figure 2
(b), this increases the source distribution mismatch since ϵϕ,src is not calculated based on the current
optimized image xθ,t.

Noise Free Score Distillation [28]:
ϵNFSD = (ϵϕ (xθ,t;∅, t)− (t < 0.2) · ϵϕ (xθ,t; yneg, t)) + s · (ϵϕ (xθ,t; ytgt, t)− ϵϕ (xθ,t;∅, t)),

where the strength of classifier-free guidance s is set to 7.5 and yneg =“unrealistic, blurry, low quality
...”. NFSD greatly reduces the guidance strength while it is observed to perform very similarly to
SDS in practice. We can better explain this phenomenon since the prompt yneg does not accurately
describe the source distribution as it omits the image’s content. In addition, the second component
with weight s = 7.5 still forms the major part of the gradient, which is the dominant term in SDS.

Classifier Score Distillation [74]:
ϵCSD = w1 · (ϵϕ (xθ,t; ytgt, t)− ϵϕ (xθ,t;∅, t)) + w2 · (ϵϕ (xθ,t;∅, t)− ϵϕ (xθ,t; ysrc, t)),

where w1 and w2 are hyperparameters. As shown in Figure 2 (c), the second term approximates the
bridge from the source distribution to the unconditional distribution, which is not ideal since it does
not point to the target distribution. It explains the observation made by the authors [74] that this
undermines the alignment with the text prompt. Therefore, the authors always anneal w2 to 0 during
the optimization. However, we show this often reintroduces the SDS artifacts in practice.

Variational Score Distillation [68, 32]:
ϵVSD = ϵϕ (xθ,t;∅, t) + s · (ϵϕ (xθ,t; ytgt, t)− ϵϕ (xθ,t;∅, t))− ϵLoRA (xθ,t; ytgt, t) .

Out of all the discussed methods, VSD attempts to minimize the source distribution mismatch error
most directly by test-time finetuning a copy of the diffusion model with LoRA on the current set
of xθ. Note that in the original paper, the use of LoRA was motivated based on a particle-based
variational framework. Our analysis enables an alternative understanding of VSD. As shown in
Figure 2 a), this approach is well-justified in our dual diffusion bridge framework. However, training a
LoRA every iteration is computationally expensive, adds complexity, and introduces its own low-rank
approximation errors. Given this insight, we propose a simple yet efficient approach to mitigating
source distribution without LoRA.
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2.4 Mitigating Source Distribution Mismatch with Textual Descriptions

Our analysis reveals that the LoRA model in VSD most closely approximates the distribution of the
current optimized parametrized image, addressing the distribution mismatch error. Unfortunately, it
incurs 200− 300% runtime overhead on top of SDS, making it impractical, despite its significant
performance gains. With this understanding, we propose a simple approach that better expresses the
source distribution. Our insight is that pre-trained diffusion models have learned the distribution of
natural and corrupted images through a combination of powerful text representation and enormous
image-caption datasets. We find that by simply describing image corruptions with a text prompt, we
can improve our estimate of the source distribution.

Specifically, we propose to use the gradient

ϵours = w · (ϵϕ (xθ,t; ytgt, t)− ϵϕ (xθ,t; ysrc, t)),

where we get ysrc by adding descriptions of the current image distribution to ytgt (the base prompt).
The remaining question is how to set this description. In generation tasks, we propose a simple
two-stage solution.

1. We use ϵSDS to produce a generation with the method’s characteristic artifacts:

2. We switch to optimization with our gradient, ϵours, to transport the image parameter toward
the natural image distribution.

To describe the artifacts produced by SDS, we append the descriptors “, oversaturated, smooth,
pixelated, cartoon, foggy, hazy, blurry, bad structure, noisy, malformed”
and drop the descriptors of the high-quality generation. Note that in all of our generation experiments,
the description of ysrc is fixed as above. We explored searching for other prompts but did not find that
variations in these descriptions made a big difference.

In editing tasks, we have an initialization that ysrc describes accurately. In such cases, we omit the
first SDS stage and only apply our gradient to optimization. We also append a “domain descriptor.”
For instance, in painting-to-real, this is simply “, painting” to represent the initial distribution.

While the use of such negative prompting has been explored before, such as in NFSD, our analysis
motivates a principled way to incorporate it into score distillation. We find that these simple
modifications significantly narrow the quality gap between SDS and resource-intensive methods like
VSD. We verify this finding experimentally with qualitative results and quantitative comparisons
across applicable tasks.

3 Experiments

In this section, we test our proposed method on several generation problems where SDS is adopted.
We compare against SDS and other task-specific baselines. Note that our goal is not to show another
state-of-the-art text-to-3D generation method, but to verify our findings, where the proposed score
distillation approach based on textual description efficiently improves the results by mitigating the
source distribution mismatch error. We first perform a thorough experiment in a controlled setting on
zero-shot text-to-image generation. Then, we compare it on text-guided NeRF optimization to SDS
and VSD and evaluate the painting-to-real image translation task against image editing baselines.
Please see more qualitative results, as well our method’s application to optical illusion generation
and 3D-sketch-to-real task, in the appendix.

3.1 Zero-Shot Text-to-Image Generation with Score Distillation

To verify our analysis of existing SDS variants and the proposed method, we perform text-to-image
generation by optimizing an image of size 64×64×4 in the Stable Diffusion latent space [68, 28]. The
benefit of choosing image generation as the evaluation task is that its generation quality has the least
confounding variables among other tasks. (e.g., in text-to-3D, many designs like regularizations [75],
initialization [35], 3D representations [9, 65, 72, 64], and 2D prior models [55, 40, 39, 47, 76] could
affect the final quality.)
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DDIM Sampling SDS NFSD

CSD VSD Ours

Figure 3: Text-to-image generation results with COCO Captions. We compare different score distillation
methods for generating images with COCO captions by optimizing a randomly initialized image. DDIM
sampling indicates the lower bound that the diffusion model can achieve. VSD [68] and our method generate the
least color artifacts while ours is more efficient than VSD.

Table 1: Zero-shot FID comparison with different score distillation methods. We report FID scores of
text-to-image generation using 5K captions randomly sampled from the COCO dataset. The best score distillation
result is indicated in bold, while the second best is underlined.

DDIM (lower bound) SDS [46] NFSD [28] CSD [74] VSD [68] Ours

Zero-Shot FID (↓) 49.12 86.02 91.70 89.96 59.22 67.89
Zero-Shot CLIP FID (↓) 16.56 28.39 29.25 27.07 18.86 20.31
Time per Sample (mins) 0.05 4.48 7.20 6.21 16.02 4.48

We use the MS-COCO [36] dataset for the evaluation. Consistent with the prior study [3], we
randomly sample 5K captions from the COCO validation set as conditions for generating images.
For each caption, we optimize a randomly initialized the image with the score distillation gradients.
We compare our method with several SDS variants including SDS [46], NFSD [28], CSD [74],
and VSD [68]. For all the methods, we use the same learning rate of 0.01 and optimize for 2, 500
steps where we generally observe convergence. We compute the zero-shot FID [21] and CLIP FID
scores [31] between these generated images and the ground truth images. We also report results
generated by DDIM with 20 steps as a lower bound for renference.

We report the FID scores and the time to optimize one image in Table 1. Among all the score
distillation methods, VSD [68] achieves the lowest FID scores. However, it requires training a LoRA
along the optimization process. Instead, ours achieves a comparable FID score with over 3× faster
speed. We visualize random examples generated by different score distillation methods in Figure 3.
We notice that SDS and NSFD suffer from the over-saturation and over-smoothness issues. CDS
has slightly fewer color artifacts. VSD and ours generate the samples that most closely resemble
the DDIM sampling.

3.2 Text-guided NeRF Optimization

We now evaluate the text-to-3D generation problem, where we intentionally aim to exclude variables
that could affect the generation quality other than the score distillation methods. We use the Three-
Studio [19] repository to optimize a NeRF with settings tuned for ProlificDreamer stage 1 (NeRF
optimization) [68]. Note that we do not perform stages 2 and 3, i.e. geometry fine-tuning and texture
refinement. Specifically, we initialize the NeRF with the method proposed by Magic3D [35], use the
regularization losses on the sparsity and opacity, and optimize for 25K steps. We adopt the native
SDS and VSD guidance implementations for comparison.
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A giant rock with moss on it, detailed, high 
resolution, high quality, sharp

A wooden chair, detailed, high resolution, 
high quality, sharp

A 3D model of an adorable cottage with a thatched roof.

VSD SDS Ours VSD SDS Ours

Various hollow, asymmetrical, textured seashells, collected 
in a sand-filled, clear glass jar with a twine-tied neck

Figure 4: Text-guided NeRF optimization with different score distillation methods. We make a fair
comparison of SDS and VSD for text-to-3D generation. For each generation, we show three uniformly sampled
views. SDS results like the cottage and pepper mill still suffer from over-saturation problems, while ours and
VSD can produce realistic details, color, and texture.

We first show visual comparisons of different score distillation methods in Figure 4. We notice
that SDS tends to generate fewer details, as shown by the rock and chair examples, and sometimes
suffers from over-saturation issues, as in 2D, as demonstrated by the cottage and seashell examples.
Instead, both VSD and ours can generate highly photo-realistic 3D objects, while ours does not
require training a LoRA model and shares a similar computational cost as SDS.

Table 2: Quantitative comparisons of NeRF opti-
mization. We measure the average CLIP similarity
of rendered views using SDS, VSD and our.

ViT-L/14 ViT-B/16 ViT-B/32

SDS [46] 0.2811 0.3196 0.3139
VSD [68] 0.2837 0.3292 0.3166
Ours 0.2848 0.3282 0.3148

We also perform a quantitative evaluation and user
study on the NeRFs optimized based on 31 differ-
ent text prompts. Note that this number is similar
to the choice of existing works on the text-to-3D
task [34, 32, 15]. However, different from these
works that ignore the confounding 3D variables that
contribute to the generation quality, we disentangle
this by isolating the score distillation method as the
only comparison variable. We follow these works to
evaluate the generation quality with CLIP [48]. We
report the CLIP similarity in Table 2. Our method consistently outperforms SDS and achieves
comparable results with VSD. In addition, in a user study consisting of 37 users, shown pairwise
comparisons of rotating 3D renders (i.e., comparisons of our result and a random choice of VSD or
SDS, with the prompt: “For a text-to-3D system, given the prompt [p], which result would you be
happiest with?”), our results were chosen in 75.7% of all responses. We also show more results in the
Appendix.

3.3 Painting-to-Real.

We examine our method’s ability to serve as a general-purpose realism prior. Paintings are "near-
manifold" images, meaning they do not possess natural image statistics but live near the image
distribution in image space. An effective image prior should guide a painting toward a nearby natural
image through optimization.

We initialize a latent image by encoding scans of the artwork through Stable Diffusion’s encoder. We
specify a prompt for each painting to condition the diffusion model and then apply the second opti-
mization stage of our method (SDS stage omitted). We experimented with automatically generating
prompts via pretrained vision language models but found the results inconsistent, so we leave this
to future work. Since the large image datasets used to train diffusion models contain artwork, we
append the domain descriptor “, painting” to ysrc to optimize away from this distribution.

While SDS is proposed to leverage a pretrained text-to-image diffusion model as an image prior, its
artifacts make it ineffective in practice. In comparison, our method realistically synthesizes details
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Input Plug-and-Play SDS OursCycleGANSDEdit Strength 0.5

“a DSLR photo of a blue pond with water lilies”

Input Plug-and-Play SDS OursCycleGANSDEdit Strength 0.5

“a DSLR photo of a historic stone church in a park with gravel and trees”

Figure 5: Painting-to-Real comparison. We compare our gradient in optimization to image restoration and
image-conditional generation baselines. While SDEdit produces convincing textures, its difficult to find a
strength value that balances structure and quality. Other baselines fail to reproduce natural image quality, while
our method produces the best combination of quality and faithfulness.

and relights the image naturally. We observe that SDS methods diverge more easily in 2D experiments
than in 3D but that the issue can be mostly resolved with tuning. A future goal is to formulate a
gradient that can be applied idempotently [56]. We compare with image reconstruction baselines in
Figure 5 and provide a small gallery of painting-to-real results in Figure 6.

Figure 6: Painting-to-Real results.We show selected Painting-to-Real samples with diverse art styles and
subjects. Initialization images are shown on the left, optimized images are shown on the right.

4 Discussion

As we have shown that reducing the distribution mismatching error can significantly improve the
generation quality of the score distillation optimization, it is natural to ask whether one can also
reduce the first approximation error, induced by linear bridge estimation, to improve the results
further. Several recent studies including SDI [41] and ISM [34] can be viewed as mitigating this error
by replacing the single-step estimation with multi-step estimation. Instead of performing multiple
PF-ODE steps, one can solve the entire PF-ODE path to recover the dual bridge and estimate the
endpoint of the bridge ψ0,tgt that is coupled with ψ0,src. In this way, we obtain the most accurate
gradient direction with little approximation error ϵ∗SBP = w · (ψ0,tgt − ψ0,src).

However, solving the inversion ODE is not trivial [27]. We noticed that the inversion can exaggerate
the distribution mismatch error and cause the optimization to get stuck at a local optimal at the
beginning of the optimization. Instead, the high variance of the single-step methods often shows
more robustness to the input image. Therefore, we first perform the single-step score distillation
optimization to obtain reasonable results before moving to solving the full bridge. We find that in
text-to-2D, such a method can produce high-quality results closer to the DDIM sampling results, as
demonstrated by a COCO-FID score of 55.65, which is better than VSD results. However, the same
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trend does not fully transfer to the text-to-3D experiments. We observe that it typically introduces
additional artifacts and makes the optimization less stable. We leave the best way of leveraging this
gradient as a future research exploration.

5 Related Work

5.1 Score Distillation Sampling

Although modalities like 3D, 4D, sketch, and vector graphics (SVGs) lack the large-scale, diverse,
and high-quality datasets needed to train a domain-specific diffusion model, previous works find it
useful to exploit image or video as a proxy modality [26, 16]. By computing the gradient on a proxy
representation with a pretrained model, optimization in the target modality is viable with differentiable
mappings, e.g. differentiable rasterization [33] for SVGs or differentiable rendering [44] for 3D
objects and scenes. The seminal method, Score Distillation Sampling (SDS) [46], first proposed to
apply a pretrained text-to-image diffusion model for text-to-3D generation. However, it requires a
high classifier-free guidance weight and, therefore, suffers from artifacts such as over-saturation and
over-smoothing. Recent works have built upon SDS to adapt it for editing tasks [30, 20, 45, 29] or
more broadly improve over the original SDS formulation [28, 1, 68, 75, 74, 76]. NFSD [28] and
LMC-SDS [1] inspect the individual components of the SDS gradient and propose methods to rectify
the high guidance weights. However, the over-saturation problem is mitigated but not fully resolved.
VSD [68] formulates the problem as particle-based variational inference and proposes to train a
LoRA [24] on the fly to estimate the score of proxy distribution. We presented a new framework that
allows rethinking all the variants under the same lens. This framework also motivates a method that
improves the quality of SDS without losing efficiency.

5.2 Visual Content Generation with SDS

Since SDS was developed for text-to-3D generation, it has also been adopted to generate various other
visual content such as SVGs [18, 71], sketches [70], texture [43, 6–8, 73], typography [25], dynamic
4D scenes [2, 58, 37] and illusions [5]. Among these applications, text-to-3D has been the most
active research direction. In addition to designing better distillation sampling methods [68, 75, 28],
prior work has also studied the underlying 3D neural representations [72, 64, 35, 9] and leveraging
multiview data to improve the 3D consistency [55, 40, 39, 47, 76]. We note that these explorations
are orthogonal to our study and should be able to work jointly with our method. In this paper, we
looked into existing applications like text-based NeRF optimization, painting-to-real, and illusion
generation. We also propose a new AR application called 3D sketch-to-real.

6 Closing Remarks

We present an analysis that formulates the use of a pre-trained diffusion model in an optimization
framework as seeking an optimal transport between two distributions. Under this lens, we analyze
SDS variants with a unified framework. We also develop a simple approach based on textual
descriptions that work comparably well to the best-performing approach, VSD, without its significant
computational burden. However, neither approaches have yet to achieve the quality and diversity of
images generated by the reverse process. We hope that our analysis enables the development of a more
sophisticated solution that can one day achieve the same quality and diversity as the reverse process
in an optimization framework. Combining our proposed method with multi-step approximations
like ISM [34] or schedules like DreamFlow [32] could mitigate the first-order approximation error
and further improve the efficiency, which is an interesting future research direction. With the rise of
high-quality video diffusion models, we anticipate that the question of how to effectively use such
models as a prior in various problems will become even more important.

Potential Social Impacts We analyze how to use a pre-trained image diffusion as a prior in
an optimization setup, necessary for domains such as 3D. On the positive side, these models can
empower individuals to make 3D content creation more accessibly without requiring specialized
skills. Additionally, professional artists and designers could rapidly prototype and visualize their
ideas, accelerating the creative process. On the negative side, the ease of generating visual content
could facilitate the spread of misinformation, proliferate biases in the training set and enable the
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usage of generated content for malicious purposes. In addition, there are ethical concerns regarding
the potential for job displacement in industries reliant on traditional art-making skills and the
copyright issues appeared in the training dataset.
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3D Sketching SDS BaselineOurs with Prompt “a flower”

Figure 7: 3D sketch-to-real. We introduce a conditional generation task in 3D where a coarse human-drawn
mesh is optimized into a high-quality mesh. While SDS and our gradient both adhere to the prompt and shape
conditions, our method produces higher fidelity colors and texture.

Appendix

In this appendix, we discuss the additional experiment details and provide more visual results,
including optical illusion sketch, text-based NeRF optimization, and 3D paint-to-real results. We also
perform an ablation study of our method.

A Additional Experimental Setup

In this section, we describe our experimental setups in more detail.

Text-to-image generation with score distillation. For CSD, we follow the original paper [74] to
use w1 = w2 = 40 at the initialization steps and anneal w2 = 0 within the first 500 steps. We use
s = 100 for SDS and s = 7.5 for NFSD and VSD, which are consistent with the best practice. We
use s = 40 and w = 25 for our method. And we optimize with ϵSDS loss for 500 iterations and then
switch to ϵours for the rest of 2, 000 iterations. For all the methods, we use a learning rate of 0.01, and
we use a learning rate of 1e− 4 to train the LoRA in VSD.

Text-guided NeRF optimization with score distillation. For our method, we optimize with ϵSDS
loss for 20, 000 iterations and then switch to ϵours for the rest of 5, 000 iterations. We use s = 100
and w = 1 for our method. We find that a high s is necessary to establish geometry in the first stage
of the text-to-3D setting, but our method is not too sensitive to this hyperparameter in 2D. We use the
rest of the learning rates and regularization strengths as the default settings.

B More Visual Results

In this section, we provide extra visual results. Specifically, we show 3D sketch-to-real and optical
illusion generation as additional applications of our method. We also report more comparisons and
ablation studies of text-based NeRF optimzition.

3D Sketch-to-Real Head-mounted displays with hand tracking are a natural platform for a sort of
"3D sketching," where 3D primitives trail from your hand like ink from a pen. The resulting coarse
mesh is structurally accurate but lacks geometric or texture detail. To this end, we propose a new
application that transfers these 3D sketches to more realistic versions. We extend our text-to-3D
solution to generate these details.

We first fit an implicit SDF volume to multi-view renders of the mesh, then apply our gradient with
the same schedule as in text-based NeRF optimization. We lower the learning rate for geometry
parameters to prevent divergence from the guiding sketch. Holding other hyperparameters equal, we
compare our gradient and the SDS gradient in Figure 7.

Illusion Generation. Prior works have shown that diffusion models can be leveraged to generate op-
tical illusions [17, 5]. In these settings, the same image looks semantically different when transformed.
To use the diffusion model sampling process, a previous study shows that the transformation has to
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SDS [46] Ours
Figure 8: Diffusion illusions. We generate overlaid optic illusions with SDS and our method. While SDS suffers
from color artifacts, our methods produce more details and proper color.

A 3D model of an adorable cottage with a thatched roof. A large, multi-layered, symmetrical wedding cake, with smooth fondant, delicate 
piping, and lifelike sugar flowers in full bloom, displayed on a silver stand.

Figure 9: Ablation study of our method without stage 1. We show directly optimizing with ysrc from the start
could undermine the quality of the geometry and produce unnecessary content.

be orthogonal [17]. However, there remain interesting illusions that are not formed by orthogonal
transformation. One such is the rotation overlays. Given a base and a rotator image, by composing
the base image with the rotator image at different angles, rotation overlays use two images to display
four images. As such composition is not defined by an orthogonal matrix, the existing method [5]
employs SDS to optimize the base and rotator images. Such a method suffers from the over-saturation
problem, as shown in Figure 8. We show that our method can generate such optical illusions with
better visual quality.

Additional text-guided NeRF optimization results. For text-guided NeRF optimization compari-
son against baselines, we follow show more results in Fig. 10. We test on the prompts used in the
original paper [68] and additional prompts [69] that we find to be challenging. We notice that SDS
often suffers from over-saturation problems. Our method does not require training a LoRA while it
can still improve SDS by getting rid of the color artifacts and generating more details.

Ablation study of stage 2. Instead of switching to stage 2 during the optimization process, we
ablate with starting without any SDS optimization from the beginning. That is, we always use the
ysrc with the descriptors “, oversaturated, smooth, pixelated, cartoon, foggy, hazy,
blurry, bad structure, noisy, malformed”. As shown in Figure 9, this makes it hard to
generate the proper geometry even though the local texture looks reasonable and is inclined to
produce excessive details that are not described by the texts. We suspect that this is because using ysrc
increases the mismatching error at the beginning of the optimization process when the initialization
does not resemble the target prompt at all.
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A pineapple, detailed, high resolution, high quality, sharp. A toucan on the wood.

A plate piled high with chocolate chip cookies.

VSD SDS Ours

A llama, detailed, high resolution, high quality, sharp.

VSD SDS Ours

A tree of potatoes, detailed, high resolution, high quality, sharp. An elephant skull.

A solid, smooth, symmetrical porcelain teapot, with a cobalt blue dragon design, 
steam rising from the spout, suggesting it's just been filled with boiling water

A large, multi-layered, symmetrical wedding cake, with smooth fondant, delicate 
piping, and lifelike sugar flowers in full bloom, displayed on a silver stand.

A model of a house in Tudor style. A bulldog, detailed, high resolution, high quality, sharp.

A walnut, detailed, high resolution, high quality, sharp. A medium-sized, layered, radially symmetrical conch shell, with a rough texture 
on the outside, fading from pink to cream, sitting alone on a sandy beach

Figure 10: Additional comparison of text-guided NeRF optimization. We show more examples to compare
with different distillation methods, SDS and VSD.
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